opencampus.sh Machine Learning Program
  • opencampus.sh Machine Learning Program
  • Course Kick-Off
  • How do I choose a course?
  • FAQ
  • Courses
    • Introduction to Data Science and Machine Learning
      • Conditions for Receiving a Certificate or ECTS
      • Preparation
      • Week 1 - Introduction to Data Science
      • Week 2 - Import and Visualization of Data
      • Week 3 - Versioning with Git (Part 1) and data preparation
      • Woche 4 - Versionierung mit git (Teil 2) und aktuelle Entwicklungen im Bereich ML
      • Woche 5 - Einführung in das maschinelle Lernen
      • Woche 6 - Overfitting und Regularisierung
      • Woche 7 - Neuronale Netze
      • Woche 8 - Fehlende Werte
      • Woche 9 - Zeitreihenanalysen
      • Woche 10 - Projektpräsentationen
    • Machine Learning with TensorFlow
      • Requirements for a Certificate of Achievement or ECTS
      • Preparation
      • Week 1 - General Introduction
      • Week 2 - Introduction to TensorFlow,Part I
      • Week 3 - Introduction to TensorFlow,Part II
      • Week 4 - Convolutional Neural Networks, Part I
      • Week 5 - Convolutional Neural Networks, Part II
      • Week 6 - Natural Language Processing, Part I
      • Week 7 - Natural Language Processing, Part II
      • Week 8 - Project Work
      • Week 9 - Sequences, Time Series and Prediction, Part I
      • Week 10 - Sequences, Time Series and Prediction, Part II
      • Week 11 & 12 - Presentation of the Final Projects
    • Intermediate Machine Learning
      • Hello and welcome😊
      • Prequisites
      • Week 1 - Course Introduction
        • Cousera Videos
      • Week 2 - Recap ML Basics, Intro to PyTorch
        • Coursera Videos
      • Week 3 - Intro Kaggle competition - EDA and baseline models with PyTorch
        • Coursera Videos
      • Week 4 - Convolutional Neural Networks
      • Week 5 - Recurrent Neural Networks
        • Cousera Videos
      • Week 6 - CNN and RNN Applications
        • Cousera Videos
      • Week 7 - Transformers & Hugging Face
      • Week 8-10 - Kaggle competiton sessions
      • Week 11 - Final Presentations
    • From LLMs to AI Agents🤖
      • Hello and welcome🤖
      • Week 1 - Course Introduction
      • Week2 - RAG +Introduction to frameworks(langchain & llamaindex)
      • Week 3 - Prompt Engineering & Demo Chatbot
    • Advanced Time Series Prediction
      • Requirements for a Certificate of Achievement or ECTS
      • Projects & Frameworks
      • Lecture material + YouTube
      • References / Books
      • Week 1 - Intro + Organisation
      • Week 2 - SARIMA(X) + GARCH-Models
      • Week 3 - Labour Day
      • Week 4 - State-Space models // Filtering
      • Week 5 - Dependence concepts: Copula // Gaussian Processes // RMT
      • Week 6 - Extremes // Anomalies // Signatures
      • Week 7 - Tree models: XGBoost // LightGBM // CatBoost
      • Week 8 - (Deep) recurrent architectures for time series data
      • Week 9 - Transformers + TemporalFusionTransformers
      • Week 10 - NBEATS(x) + NHITS
      • Week 11 - LLM for time series problems
      • Week 12 - Final Presentations
      • Week 13 - Final Presentations (Back-Up)
    • Python: Beginner to Practitioner
      • Week 1
      • Week 2
      • Week 3
      • Week 4
      • Week 5
      • Resources
        • Worklabs
        • Harvard Course
    • Fine-Tuning and Deployment of Large Language Models
      • Requirements for a Certificate of Achievement or ECTS
      • Preparation
      • Week 1 - General Introduction
      • Week 2 - Project Definition and Introduction to Fine-Tuning
      • Week 3 - Fine-Tuning Characteristics
      • Week 4 - Model Evaluation
      • Week 8 - Tokenization for Instruction Tuning
      • Week 9 - Efficient Inference
      • Week 10 - Project Presentations
    • Archive
      • Deep Learning from Scratch
        • Requirements for a Certificate of Achievement or ECTS
        • Preparation
        • Week 1 - General Introduction
        • Week 2 - Introduction to Deep Learning and Neural Network Basics
        • Week 3 - Shallow Neural Networks
        • Week 4 - Deep Neural Networks
        • Week 5 - Practical Aspects of Deep Learning
        • Week 6 - Optimization Algorithms
        • Week 7 - Hyperparameter Tuning
        • Week 8 - Machine Learning Strategy 1 & 2
        • Week 9 - Neural Networks Architecture | Project Checkpoint
        • Week 10 - Bonus: most voted topic
        • Week 11 - Presentation of Final Projects, Part I
        • Week 12 - Presentation of Final Projects, Part II
      • Deep Learning for Computer Vision
        • Requirements for a Certificate of Achievement or ECTS
        • Preparation
        • Week 1 - General Introduction
        • Week 2 - Foundations of Convolutional Neural Networks
        • Week 3 - Convolution Model Application
        • Week 4 - Residual Networks
        • Week 5 - Transfer Learning
        • Week 6 - Detection Algorithms
        • Week 7 - Project Checkpoint | Image Segmentation
        • Week 8 - Face Recognition
        • Week 9 - Art Generation with Neural Style Transfer
        • Week 10 - CNN Bonus
        • Week 11 - Final Presentation of the Projects
      • Application of Transformer Models
        • Requirements for a Certificate of Achievement or ECTS
        • Week 1 - General Introduction
        • Week 2 - Self-Attention and Prompt Design
        • Week 3 - Introduction to Transformer Models
        • Week 4 - Fine-Tuning Pretrained Models
        • Week 5 - The Datasets Library
        • Week 6 - The Tokenizers Library
        • Week 7 - Main NLP Tasks
        • Week 8 - Presentation of the Final Projects
      • Generative Adversarial Networks
        • Requirements for a Certificate of Achievement or ECTS
        • Preparation
        • Motivation - Things you can do with NLP
        • Week 1 - General Introduction to the course
        • Week 2 - Sentiment Analysis with Logistic Regression
        • Week 3 - Sentiment Analysis with Naïve Bayes
        • Week 4 - Vector Space Models
        • Week 5 - Machine Translation and Document Search
        • Week 6 - Autocorrect
        • Week 7 - Part of Speech Tagging and Hidden Markov Models
        • Week 8 - Autocomplete and Language Models
        • Week 9 - Word embeddings with neural networks
        • Week 10 - Final Projects
      • Lehren und Lernen mit KI
        • Woche 1 - Einführung
        • Woche 2 - Anwendungsbeispiele #twlz
        • Woche 3 - KI-Tools für den Bildungsbereich
        • Woche 4 - Nicht-technische Einführung in die KI
        • Woche 5 - Kreatives Schreiben
        • Woche 6 - Automatische Klassifizierung von Textantworten
        • Woche 7 - IQSH Handreichung zu CHatGPT
        • Woche 8 - Veränderungen in benötigten Kompetenzen
        • Woche 9 - Präsentation Abschlussprojekte
      • Reinforcement Learning
      • Machine Learning Operations (MLOps)
        • 19-04-2023 - General Introduction
        • 26-04-2023 ML Lifecycle Overview and Model Selection
        • 03-05-2023 Data Definition and Collection
        • 10-05-2023 From Feature Engineering to Data Storage
        • 17-05-2023 Advanced Data Processing & Intro into Model Serving
        • 24-05-2023 Model Infrastructure & Delivery
        • 31-05-2023 Model Monitoring
        • 07-06-2023 Project Presentations
      • Mathematik für maschinelles Lernen
      • TensorFlow Course: Week 10 - Special Issues Considering Your Final Projects
      • Deep Dive into LLMs
        • Week 1 - Introduction
        • Week 2 - Tokens & Embeddings revisted
        • Week 3 - Introduction to Transformers
        • Week 4 - Prompt Engineering
          • Chain of Thought
          • TELeR: A General Taxonomy of LLM Prompts for Benchmarking Complex Tasks
          • More techniques
        • Week 5 - RAG and Agents
        • Week 6 - Model Evaluation
        • Week 7 - Fine-Tuning I
        • Week 8 - Fine-Tuning II and Model Inference
        • Week 9 - Advisory Session
        • Week 10 - Project Presentations
      • Intermediate Machine Learning (Legacy SS2023)
        • Hello and welcome😊
        • Prequisites
        • Week 1 - Course Introduction
        • Week 2 - Recap ML Basics, Intro to PyTorch
        • Week 3 - Intro Kaggle competition - EDA and baseline models with PyTorch
        • Week 4 - Convolutional Neural Networks
        • Week 5 - Recurrent Neural Networks
        • Week 6 - CNN and RNN Applications
        • Week 7 - Transformers Part 1
        • Week 8 - Transformers Part 2
        • Week 9 - Vision Transformers
        • Week 10-12 - Projects sessions
        • Week 13 - Project Presentations
        • Week 14+
      • Practical Engineering with LLMs
        • Week 1- General Introduction
        • Week 2 - Prompt Engineering
        • Week 3 - Introduction to LangChain
        • Week 4 - Introduction to Retrieval Augmented Generation
        • Week 5 - Advanced Retrieval Augmented Generation
        • Week 6 - Building User Interfaces with Gradio
        • Week 7 - Evaluation of LLM outputs and structured outputs
        • Week 8 - Open-Source LLMs
        • Week 9 - Project Presentations
      • Python: From Beginner to Practictioner (Legacy WS2023)
        • Course Info
        • Week 1
        • Week 2
        • Week 3
        • Week 4
        • Week 5
        • Week 6
        • Week 7
        • Week 8
        • Week 9
        • Solutions & Materials
      • Machine Learning für die Medizin
        • Bedingungen für ein Leistungszertifikat oder ECTS
        • Vorbereitung
      • Time Series Prediction
        • Requirements for a Certificate of Achievement or ECTS
        • Projects & Frameworks
        • Preparation / YouTube
        • References / Books
        • Week 1 - Intro + Organisation
        • Week 2 - Forecasting basics with trends: AR + MA-models
        • Week 3 - Covering seasonality: From ARMA to SARIMA-models
        • Week 4 - Towards multidimensional settings: SARIMAX + VAR-models
        • Week 5 - Non-Stationary model classes: GARCH + DCC-GARCH
        • Week 6 - Copula Methods
        • Week 7 - Milestone Meeting + Spectral Analysis of Time Series + Kalman-Filtering
        • Week 8 - Supervised Learning I: Trees + Random Forests + Boosting
        • Week 9 - Supervised Learning II: XGBoost + LightGBM + CatBoost
        • Week 10 - Neural Networks for Sequences: RNNs + GRUs + LSTMs + LMUs
        • Week 11 - Prophet(Facebook) + DeepAR(Amazon) + GPVAR
        • Week 12 - Transformers + TFTs
        • Week 13 - NBEATS(s) + NHITS(x)
        • Week 14 - Final Presentation
      • Python: From Beginner to Practitioner (Legacy 2024S)
        • Course Info
        • Week 1
        • Week 2
        • Week 3
        • Week 4
        • Week 5
        • Week 6
        • Week 7
        • Week 8
        • Week 9
        • Week 10
        • Week 11
        • Week 12
        • Material
      • Einführung in Data Science und maschinelles Lernen
        • Bedingungen für ein Leistungszertifikat oder ECTS
        • Vorbereitung
        • Woche 1 - Einführung in Data Science
        • Woche 2 - Import und Visualisierung von Daten
        • Woche 3 - Versionierung mit git (Teil 1) und Datenaufbereitung
        • Woche 4 - Versionierung mit git (Teil 2) und aktuelle Entwicklungen im Bereich ML
        • Woche 5 - Einführung in das maschinelle Lernen
        • Woche 6 - Overfitting und Regularisierung
        • Woche 7 - Neuronale Netze
        • Woche 8 - Fehlende Werte
        • Woche 9 - Zeitreihenanalysen
        • Woche 10 - Projektpräsentationen
      • Python: From Beginner to Practitioner (Legacy 2024W)
        • Course Info
        • Week 1
        • Week 2
        • Week 3
        • Week 4
        • Week 5
        • Week 6
        • Week 7
        • Week 8
        • Week 9
        • Week 10
        • Week 11
        • Final Project
        • Resources
  • Events
    • Coding.Waterkant 2023
    • Prototyping Week
  • Course Projects
    • Choosing a Project
    • How to Start, Complete, and Submit Your Project
  • Additional Resourses
    • Glossary
    • Coursera
    • Selecting the Optimizer
    • Choosing the Learning Rate
    • Learning Linear Algebra
    • Learning Python
    • Support Vector Machines
    • ML Statistics
  • Tools
    • Git
    • RStudio
    • Google Colab
    • Zoom
Powered by GitBook
On this page

Was this helpful?

Export as PDF
  1. Additional Resourses

Glossary

A field of computer science that aims to make computers exhibit intelligent human-like behavior. There are many approaches to achieving this goal, including machine learning and deep learning.During your study of Machine Learning you will come across many different terms such as artificial intelligence, machine learning, neural network, and deep learning. But what do these key words actually mean?

Below we will give a brief intro to all the different words in the AI lingua:

Artificial Intelligence:

  • Machine Learning: A set of related techniques in which computers are trained with examples to perform a particular task rather than by explicitly programming them.

  • Neural Network: A construct in Machine Learning inspired by the network of neurons (nerve cells) in the human brain. Neural networks are the core of deep learning!

  • Deep Learning: A subfield of machine learning that uses multi-layered neural networks. Often, “machine learning” and “deep learning” are used interchangeably.

So you now know how to distinguish the big terms in AI. Below we introduce you to all other important key words:

Use Ctrl + f to search for a specific word

  • Feature: The input(s) to our model (e.g. value of a pixel, price of a house, sex of the person, etc.)

  • Examples: An input/output pair used for training

  • Labels: The output of the model

  • Layer: A collection of nodes(single neurons) connected together within a neural network.

  • Model: The representation of your neural network

  • Dense and Fully Connected (FC): Each node in one layer is connected to each node in the previous layer.

  • Weights and biases: The internal variables of model

  • Loss: The discrepancy between the desired output and the actual output

  • MSE: Mean squared error, a type of loss function that counts a small number of large discrepancies as worse than a large number of small ones.

  • Gradient Descent: An algorithm that changes the internal variables a bit at a time to gradually reduce the loss function.

  • Optimizer: A specific implementation of the gradient descent algorithm. (There are many algorithms for this. In this course we will only use the “Adam” Optimizer, which stands for ADAptive with Momentum. It is considered the best-practice optimizer.)

  • Learning rate: The “step size” for loss improvement during gradient descent.

  • Batch: The set of examples used during training of the neural network

  • Epoch: A full pass over the entire training dataset

  • Forward pass: The computation of output values from input

  • Backward pass (backpropagation): The calculation of internal variable adjustments according to the optimizer algorithm, starting from the output layer and working back through each layer to the input.

  • Flattening: The process of converting a 2d image into 1d vector

  • ReLU: An activation function that allows a model to solve nonlinear problems

  • Softmax: A function that provides probabilities for each possible output class

  • Classification: A machine learning model used for distinguishing among two or more output categories

  • Training Set: The data used for training the neural network.

  • Test set: The data used for testing the final performance of our neural network.

  • CNNs: Convolutional neural network. That is, a network which has at least one convolutional layer. A typical CNN also includes other types of layers, such as pooling layers and dense layers.

  • Convolution: The process of applying a kernel (filter) to an image

  • Kernel / filter: A matrix which is smaller than the input, used to transform the input into chunks

  • Padding: Adding pixels of some value, usually 0, around the input image

  • Pooling The process of reducing the size of an image through downsampling.There are several types of pooling layers. For example, average pooling converts many values into a single value by taking the average. However, maxpooling is the most common.

  • Maxpooling: A pooling process in which many values are converted into a single value by taking the maximum value from among them.

  • Stride: the number of pixels to slide the kernel (filter) across the image.

  • Downsampling: The act of reducing the size of an image

  • Early Stopping: In this method, we track the loss on the validation set during the training phase and use it to determine when to stop training such that the model is accurate but not overfitting.

  • Image Augmentation: Artificially boosting the number of images in our training set by applying random image transformations to the existing images in the training set.

  • Dropout: Removing a random selection of a fixed number of neurons in a neural network during training.

  • Transfer Learning: A technique that reuses a model that was created by machine learning experts and that has already been trained on a large dataset. When performing transfer learning we must always change the last layer of the pre-trained model so that it has the same number of classes that we have in the dataset we are working with.

  • Freezing Parameters: Setting the variables of a pre-trained model to non-trainable. By freezing the parameters, we will ensure that only the variables of the last classification layer get trained, while the variables from the other layers of the pre-trained model are kept the same.

PreviousHow to Start, Complete, and Submit Your ProjectNextCoursera

Last updated 4 years ago

Was this helpful?